Brackets (7-9)

Contents

Single brackets (7-9)
Single brackets with a negative outside (8-9)
Double brackets (8-9)
Equations involving double brackets

Introduction

We have already seen that brackets are needed in certain expressions:

I think of a number, add 8 and multiply by 4 ... 4(x + 8)

It is possible to expand brackets so that the expression no longer has brackets.

1 Single brackets (7-9)

Consider the sum $3 \times (2+4)$. We can see the answer is $3 \times 6 = 18$. This can be worked out in another way:

$$3 \times (2+4) = 3 \times 2 + 3 \times 4$$

= $6+12$
= 18

We can see that each number in the bracket must be multiplied by the number outside. We can extend this into algebra:

$$3(a+4) = 3 \times a + 3 \times 4$$

= $3a + 12$
 $6(m-2) = 6m - 12$
 $x(x+5) = x^2 + 5x$

If an expression contains more than one set of bracket, these can be expanded separately and then the expression can be simplified by collecting the like terms:

$$5(x+9) + 9(x-2) = 5x + 45 + 9x - 18$$
$$= 5x + 9x + 45 - 18$$
$$= 14x + 27$$

2 Single brackets with a negative outside (8-9)

Be very careful when there is a negative term outside a bracket. Consider first this example with numbers:

$$-3 \times (9-5) = -3 \times 4$$
$$= -12$$

Or

$$-3x(9-5) = (-3) \times 9 - (-3) \times 5$$

$$= -27(-15)$$

$$= -27 + 15$$

$$= -12$$

We can see that the 9 has become -27 after expanding and the -5 has become +15. That is, positive terms become negative and negative terms become positive when there is a negative outside the brackets.

We can extend this to algebra. We will use \oplus to stand for positive and \ominus for negative in this example:

$$-7(x-2) = -7(x - 2)$$

$$= -7x + 14$$

Again notice how negative terms have become positive and vice versa.

$$-6(y+8) = -6y - 48$$

$$-5(m-7) = -5m + 35$$

$$5(a+9) - 3(2-a) = 5a + 45 - 6 + 3a$$

$$= 5a + 3a + 45 - 6$$

$$= 8a + 39$$

3 Double brackets (8-9)

We can have a set of double brackets in algebra:

$$(x+3)(x+2)$$

Do not confuse this with two sets of single brackets:

$$(x+3) + (x+2)$$

Double brackets must have a multiplication between them.

Consider 11×12 ; we know the answer to this is 132: lets see how we can get 132 using double brackets:

$$11 \times 12 = (10+1) \times (10+2)$$

$$= 10 \times 10 + 10 \times 2 + 1 \times 10 + 1 \times 2$$

$$= 100 + 20 + 10 + 2$$

$$= 132$$

We can see that every term in one bracket must be multiplied by every term in the other, giving four pairs altogether. A good way to remember this is **F.O.I.L.**

Using **F.O.I.L.** we can expand double brackets involving algebraic terms:

$$(p+3)(p+2) = (p \times p) + (p \times 2) + (3 \times p) + (3 \times 2)$$

$$= p^{2} + 2p + 3p + 6$$

$$= p^{2} + 5p + 6$$

Here are more examples:

$$(m+4)(m-2) = m^{2} - 2m + 4m - 8$$
$$= m^{2} + 2m - 8$$
$$(k-3)(k-4) = k^{2} - 4k - 3k + 12$$
$$= k^{2} - 7k + 12$$

A common mistake — we must multiply every pair, not add them:

$$(x+5)(x+2) = x^2 + 2x + 5x + 7$$
 WRONG
 $(x+5)(x+2) = x^2 + 2x + 5x + 10$ CORRECT

Some expressions do not appear to be double brackets, but they are double brackets in disguise:

$$(x+4)^2$$
 ... you may want to write $x^2 + 16$
But $(x+4)^2$ means $(x+4)(x+4)$.

$$(x+4)^{2} = (x+4)(x+4)$$
$$= x^{2} + 4x + 4x + 16$$
$$= x^{2} + 8x + 16$$

Challenge. Can you put all of your brackets skills together and try to simplify

$$(y-3)^{2} - 7(y-9)?$$

$$(y-3)^{2} - 7(y-9) = (y-3)(y-3) - 7(y-9)$$

$$= y^{2} - 3y - 3y + 9 - 7y + 63$$

$$= y^{2} - 3y - 3y - 7y + 9 + 63$$

$$= y^{2} - 13y + 72$$

4 Equations involving double brackets

Follow this example:

Solve
$$(x+5)^2 = (x+6)(x-4)$$
.

$$(x+5)^2 = (x+6)(x-4)$$

$$(x+5)(x+5) = (x+6)(x-4)$$

$$x^2 + 5x + 5x + 25 = x^2 - 4x + 6x - 24$$

$$x^2 + 10x + 25 = x^2 + 2x - 24$$

$$10x + 25 = 2x - 24 \text{ (}x^2 \text{ cancels from each side)}$$

$$8x + 25 = -24$$

$$8x = -49$$

$$x = -\frac{49}{8}$$

$$x = -6\frac{1}{8}$$

N.B. Do not confuse $(x+5)^2 + (x+6)(x-4)$ and $(x+5)^2 = (x+6)(x-4)$. The first is an expression which can be expanded and simplified. The second is an equation so the x^2 term will cancel since it can be subtracted from both sides of the equation.