Inequalities (Year 9)

Contents

1 What is an inequality?
2 Displaying inequalities on a number line
3 Solving inequalities
4 Showing Inequalities on a graph
4

1 What is an inequality?

An inequality is a mathematical statement containing one of the following signs.

- < Less than
- \leq Less than or equal to
- > Greater than
- ≥ Greater than or equal to

For example, 5 > 3 is a true inequality. Inequalities occur frequently in real life:

You have to be over 18 to buy alcohol A>18The lift can only hold 12 passengers $P\le 12$ Pop Idol takes contestants between 18 & 25 years inclusive $18 \le A \le 25$

2 Displaying inequalities on a number line

If we take an inequality such as x > 8, there are many "solutions" to this inequality. For example, $9, 10, 11, 12, 13, 14, 15.2, 16\frac{1}{4}, 100\frac{3}{4}$ etc. For this reason, we show the solution to an inequality on a number line to show this infinite range of answers, rather than writing them all out:

 $x \leq 8$

x < 8 (this doesnt include 8, it means 7.9999... and below)

 $p \ge 2$

q > -3

So, we use a solid circle (\bullet) if the number we start from is included in the inequality and a hollow one (\circ) if it isnt.

3 Solving inequalities

It would be easy if we could solve inequalities using the same methods as we do for equations. Let us try performing a mathematical operation to each side of an inequality and see if it remains true:

Consider 4 < 8 in each case:

Operation	New Inequality	Comment
Add 2 to both sides	6 < 10	True
Add -2 to both sides	2 < 6	True
Subtract 2 from both sides	2 < 6	True
Subtract -2 from both sides	6 < 10	True
Multiply each side by 2	8 < 16	True
Multiply each side by -2	-8 < -16	FALSEonly true if
		we reverse the sign
Divide each side by 2	2 < 4	True
Divide each side by -2	-2 < -4	FALSE only true if
·		we reverse the sign

As the table demonstrates, we can carry out every mathematical operation with positive or negative numbers, except multiplying by a negative and dividing by a negative: in these two cases, we have to swap the inequality sign if we perform these operations.

Example. Solve 3x - 9 > 9x + 11.

$$3x + 9 > 9x - 18$$

 $9 > 9x + 18$
 $-9 > 9x$
 $-1 > x$

x > -1 (we could show this on a number line)

Example. Solve
$$-3y > 12$$
.

$$-3y > 12$$
 We have to divide by -3 $y > -4$ We had to swap the sign

Example. Solve 3x + 9 < 15 < 2x - 1. In a double inequality, solve each "half" and then combine the answers:

$$3x + 9 < 15$$
 $15 < 2x - 1$
 $3x < 6$ $16 < 2x$
 $x < 2$ $8 < x$

So, our answer is any number less than 2 and any number over 8.

Example. Solve 2x - 10 < 9 < 5x + 14.

$$2x - 10 < 9$$
 $9 < 5x + 14$
 $2x < 19$ $-5 < 5x$
 $x < 9.5$ $-1 < x$

So, our answer is any number greater than -1 and below 9.5. Since this is a continuous range of numbers (and not two separate sections like the previous example), we can write:

$$-1 < x < 9.5$$

GCSE style question

List the integer values that satisfy 10 < 2x < 21:

$$10 < 2x$$

$$5 < x$$

$$2x \le 21$$

$$x \le 11.5$$

We want any whole number over 5 and below or equal to 11.5. The integers that satisfy this are:

4 Showing Inequalities on a graph

We can represent inequalities in two dimensions using a set of axes. Consider the inequality $x \geq 2$. What we really want here are all the coordinates that we can think of whose first number (the x coordinate) is two or more i.e. $(2,7),(3,9),(5,-1)\ldots$ The graphs shows all such coordinates that are integers (i.e. zero or negative/positive whole numbers):

We can see that the coordinates we require create a "blanket" or region. This region starts with the vertical line x=2. In general, we cross out the points we dont want and leave clear what we do:

So, if we wanted to show the inequality y < 1, we would: Start by plotting the line y = 1 (horizontal, see graph lesson), Shade all the points that we do not want ... if in doubt, check with a "points test" e.g. we know that we do not want (3,2) since the y-coordinate is 2 and so not below 1. Since (3,2) is above our line, we shade out all points above and our required region is all points below:

N.B. Notice in the example $x \geq 2$ how our graph is a solid line but in the above example, y < 1, it is a dotted line. In the second example, we do not want to include "1", just points immediately below it.

$$<$$
 or $>$ Dotted graph \le or \ge Solid graph

Example. Show the region y > 2x - 1:

- Draw the graph y = 2x 1 (diagonal line so plot 3 points).
- Points test using (3,1): is $1 > 3 \times 11$? No, so don't include (3,1) which is below the line, meaning we want points above the line:

Example. What inequalities are shown by the following unshaded region?

The two vertical lines are x=1 (solid) and x=5 (dotted). So they give $x\geq 1$ and x<5, which we can write as $1\leq x<5$. The vertical line is y=-2 (dotted). This gives y>-2. The diagonal line(dotted) passes through $(1,1),(2,2),(3,3)\ldots$ so is y=x. It gives us the inequality y>x. Hence, the inequalities that give this region are:

$$1 \le x < 5, \quad y > -2, \quad y > x.$$