Fraction ordering and calculations (7–8)

Contents

I	Vocabulary	
2	Ordering fractions	
3	Fraction calculations 3.1 Fraction of a quantity	
1	Vocabulary	
	$\frac{3}{5}$	This is a proper fraction with a numerator of 3 and a denominator of 5
	$\frac{7}{5}$	This is an improper fraction . It can be changed to a mixed number by noticing that 5 goes into 7 once, with 2 left over i.e. $1\frac{2}{5}$.
	$3\frac{2}{5}$	This is a mixed number . It can be changed to an improper fraction by doing $(3 \times 5) + 2$ to get $\frac{17}{5}$.
	$\frac{6}{10}$ and $\frac{3}{5}$	These are equivalent fractions , but only $\frac{3}{5}$ is in its simplest terms . We can convert between fractions by multiplying or dividing the numerator and denominator by the same amount (in this case by two).

1

1

2 2 3

2 Ordering fractions

It is easy to see that $\frac{3}{5}$ is smaller than $\frac{4}{5}$ since they are the same type of fraction. However, it is not so easy to see which is largest between $\frac{7}{8}$ and $\frac{6}{7}$. To decide this, we should convert each fraction into the same type i.e. ones with the same denominator:

$$\frac{7}{8} = \frac{7 \times 7}{8 \times 7}$$

$$= \frac{49}{56}$$

$$= \frac{48}{56}$$

$$= \frac{6 \times 8}{7 \times 8}$$

$$= \frac{48}{56}$$

1

We can now see that the first fraction is slightly larger (by $\frac{1}{56}$ only!).

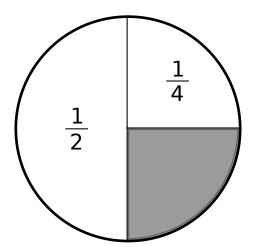
3 Fraction calculations

3.1 Fraction of a quantity

If we wanted to find $\frac{3}{4}$ of 20, we would start by finding one quarter (by dividing by 4) then finding three of these:

$$\frac{3}{4} \text{ of } 20 = 3 \times (20 \div 4)$$
$$= 3 \times 5$$
$$= 15$$

This can be extended to more difficult values. For instance,


$$\frac{4}{17}$$
 of $85 = 4 \times (85 \div 17)$
= 4×5
= 20

3.2 Adding and subtracting fractions

If we think about this sum, we can see it is clearly wrong:

$$\frac{1}{2} + \frac{1}{4} = \frac{2}{6}$$

By imagining, say, a cake, we can see that $\frac{1}{2}$ added to $\frac{1}{4}$ gives $\frac{3}{4}$:

That is, we cannot add or subtract fractions by simply adding the tops and adding the bottoms. However, we know this to be true:

$$\frac{1}{4} + \frac{1}{4} = \frac{2}{4}.$$

2

So, as long as the fractions of from the same family, we simply add the "tops" (numerators). If they aren't from the same family, we have to convert them first:

$$\frac{2}{5} + \frac{1}{3} = \frac{2 \times 3}{5 \times 3} + \frac{1 \times 5}{3 \times 5}$$
$$= \frac{6}{15} + \frac{5}{15}$$
$$= \frac{11}{15}$$

If the numbers are mixed, we need to convert to top heavy to begin with:

$$3\frac{1}{3} - 2\frac{2}{7} = \frac{10}{3} - \frac{16}{7}$$

$$= \frac{10 \times 7}{3 \times 7} - \frac{16 \times 3}{7 \times 3}$$

$$= \frac{70}{21} - \frac{48}{21}$$

$$= \frac{22}{21}$$

$$= 1\frac{1}{21}$$

3.3 Multiplying and dividing fractions

If we think about what "half of a half" is, we can see this is a quarter. That is:

$$\frac{1}{2}$$
 of $\frac{1}{2} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$.

Hence, we notice that to multiply fractions we simply multiply the numerators and the denominators ("tops" and "bottoms"). For example,

$$\frac{2}{7} \times \frac{3}{5} = \frac{6}{35}.$$

If we look at the following example, we see that we may need to cancel the answer:

$$\frac{2}{7} \times \frac{3}{4} = \frac{6}{28} \\
= \frac{3}{14}.$$

Rather than cancelling at the end, we could try to cancel top to bottom before multiplying:

$$\frac{2}{7} \times \frac{3}{4} = \frac{\cancel{2}^1}{7} \times \frac{3}{\cancel{A}_2}$$
$$= \frac{1}{7} \times \frac{3}{2}$$
$$= \frac{3}{14}.$$

Think about the expression $50 \div \frac{1}{2}$. It is very tempting to think the answer is 25, but we see that $\frac{1}{2}$ "fits into" 50 one hundred times exactly. That is:

$$50 \div \frac{1}{2} = 100.$$

We notice, then, that $50 \div \frac{1}{2}$ is equivalent to 50×2 . So, to divide by a fraction, we multiply by the second fraction "flipped over". That is, we multiply by the **reciprocal** of the second fraction. E.g.

$$\frac{2}{9} \div \frac{3}{5} = \frac{2}{9} \times \frac{5}{3} \\ = \frac{10}{27}.$$