Rules of indices
Stuck? Read the notes
To enter an answer such as p^{12}, type p^12 in the answer box.
- v^{7} \times v^{3}
- p^{11} \times p^{8}
- u^{6} \times u^{14}
- q^{-2} \times q^{-8}
- v^{7} \div v^{3}
- p^{11} \div p^{8}
- u^{6} \div u^{14}
- q^{-2} \div q^{-8}
- \left( v^{7} \right)^{3}
- \left( p^{11} \right)^{8}
- \left( u^{6} \right)^{14}
- \left( q^{-2} \right)^{-8}
- 3^{6} \div 3^{5}
- \left( 2^{3} \right)^{4}
- 5^{8} \times 5^{-6}
- 1^{35} \times 1^{49}
- What does it simplify to?
- \left( 3v^{3} \right)^{2}
- \left( 3t^{2} \right)^{3}